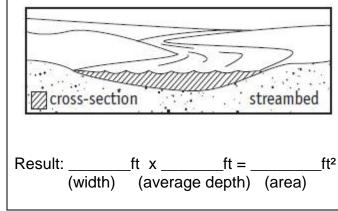
Stream Data Sheet	Name
Stream Name	
Location	
Collection Date	
Weather Conditions (Last 3 Days)	

Measuring Stream Velocity


Record the time it takes for an orange to float downstream 10 feet. Repeat the experiment at various places along the stream. Make comparisons. Discuss changes in habitat that occur as the speed of the stream increases.

Stream Velocity Worksheet						
Tries	Distance	Time		Velocity		
1	10 ft	÷	S=		ft/s	
2	10 ft	÷	S=		ft/s	
3	10 ft	÷	S=		ft/s	
4	10 ft	÷	S=		ft/s	
			Total =		ft/s	
				÷ 4		
		Average	Velocity		ft/s	

This worksheet was adapted from the National Park Service.

Calculate the Cross-section Area

Choose a cross-section of creek in the middle of the 10-foot section of creek and calculate the cross-section area.

Average Depth Work Area					
	Depth	Convert to feet			
1	in	÷	12=		ft
2	in	÷	12=		ft
3	in	÷	12=		ft
Total =			ft		
		÷ 3			
Average Depth			ft		

This worksheet was adapted from the National Park Service.

Cyberbee Learning

Calculate Stream Flow Multiply velocity times area to calculate flow. _____ft/s x _____ft² = _____cfs (cubic feet per second) (area) (velocity) ☐ Muddy Water Clarity Clear Cloudy **Temperature** Measure the temperature of the stream at various depths and locations. Compare the results. Location 1 F°____ C° ____ Location 3 F°___ C° ____ Location 2 F°____ C° ____ Location 4 F°___ C° ____ Average Temperature F°____ C° ____ **Water Quality** Use the biotic index to compare life in different stream habitats and the quality of the water. You will

collect macroinvertebrate samples and determine the water quality of the stream.

Stream Life: Macroinvertebrate Sampling

Step 1: Collect Samples

Wade into the stream and scoop material from the bottom of the stream. Push and pull the kick net through the stream. Hand pick organisms from under and on top of rocks and logs.

Step 2: Prepare Samples

Rinse the sediment from your sieve. Hold your kick net over a plastic pan and use a bucket of water to wash the material into the pan.

Step 3: Sort Samples

Sort and identify the macroinvertebrates using the biotic index and collection jars. Record the number of the types of organisms on the macroinvertebrate stream data worksheet.

Macroinvertebrate Count

Put a check in the box next to the organism you find. Multiply the number of organisms by the points for each class. Add the index values for each class.

Class 1: Sensitive (3 Points Each)	Class 2: Somewhat Tolerant (2 Points Each)	Class 3: Tolerant (1 Point Each)		
Caddisfly Larvae	Crane Fly Larvae	Aquatic Worms (Tubifex)		
Dobsonfly Larvae	Crayfish	Black Fly Larvae		
Fairy Shrimp	Damselfly Nymphs	Drone Fly Larvae		
Fish & Other Invertebrates	Dragonfly Nymphs	Leeches		
Gilled Snails	Fingernail Clams	Lung Snail		
Mayfly Larvae	Flatworms	Other Snails		
Riffle Beetle Adult	Scuds	Midge Larvae		
Salamanders	Sowbugs	Mosquito Larvae		
Stonefly Nymphs				
Water Penny Larvae				
Boxes checked x 3 =	Boxes checked x 2 =	Boxes checked x 1 =		
index value Class 1	index value Class 2	index value Class 3		
Water Quality Rating Excellent (>22) Good (17-22)				
Total Index Value =	otal Index Value =			